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1 Comparative measures / parameters:

Comparative
Measure Parameter Estimate New Scale
(Risk or
Prevalence)
Difference π1 − π2 p1 − p2

(Risk or

NNT 1/{π1 − π2} 1/{p1 − p2} Number Needed to Treat

(Risk or
Prevalence)
Ratio π1

π2

p1
p2

log p1
p2

= log p1 − log p2

Odds Ratio π1/(1−π1)
π2/(1−π2)

odds1
odds2

log[ odds1odds2
] = logit1 − logit2

Cf. Rothman 2002 p. 135 Eqns 7-2, 7-3 and 7-6.

2 Large-sample CI for Comparative Parameter
(if 2 component estimates are uncorrelated)

2.1 In General: (if work in new scale, must back-transform)

estimate1 − estimate2 ± z × SE[estimate1 − estimate2]
estimate1 − estimate2 ± z × (Var[estimate1] + Var[estimate2])1/2.

2.2 In Particular

Risk/Prevalence Difference

p1 − p2 ± z × SE[p1 − p2] = p1 − p2 ± z × (SE2[p1] + SE2[p2])/2

= p1 − p2 ± z × (p1q1/n1 + p2q2/n2)1/2

Risk/Prevalence Ratio

antilog {log(p1/p2)± z × (SE2[log p1] + SE2[log p2])1/2},
where, for i = 1, 2,

SE2[log pi] = V ar[log pi] = 1/#positivei − 1/#totali.

Odds ratio1

antilog {log[oddsratio]± z × (SE2[logit1] + SE2[logit2])1/2}

where, for i = 1, 2,

SE2[logiti] = V ar[logiti] = 1/#positivei + 1/#negativei.

Var[log or] = 1/a+ 1/b+ 1/c+ 1/d for CIOR → “Woolf’s Method.”

2.3 Large-sample test of π1 = π2

Equivalent
to test of π1 − π1 = 0→ Risk or Prevalence Difference = 0.

π1/π2 = 1→ Risk or Prevalence Ratio = 1.

pi1/(1−π1)
π2/(1−π2) = 1→ Odds Ratio = 1.

z = (p1 − p2 − {∆ = 0}) / SE[p1 − p2]

= (p1 − p2) / (p[1− p]/n1 + p[1− p]/n2)1/2

where p = y/n, with y = y1 + y2; n = n1 + n2.

1The Odds Ratio (OR) is close to the Risk Ratio when the ‘denominator’ odds is low, e.g.
under 0.1, and the Risk Ratio is not extreme. For example, if π1 = 0.16, and π2 = 0.08, so
that the Risk Ratio is 2, then OR = (0.16/0.84)/(0.08/0.92) = 2.2; but the approximation
worsens with increasing π2 and increasing Risk Ratio.
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Examples:

0 The generic 2× 2 contingency table:

+ – All

sample 1 y1(%) n1 − y1 n1(100%)
sample 2 y2(%) n2 − y2 n2(100%)

Total y(%) n - y n(100%)

1 Bromocriptine for unexplained primary infertility:2

Became Did Total no.
pregnant not couples

Bromocriptine 7 (29%) 17 24(100%)
Placebo 5(22%) 18 23(100%)

Total 12(26%) 35 47(100%)

2 Vitamin C and the common cold:3

No cold ≥ 1 cold Total subjects
Vitamin C 105(26%) 302 407(100%)

Placebo 76(18%) 335 411(100%)

Total 181(22%) 637 818(100%)

3 Stoke Unit vs. Medical Unit for Acute Stroke in elderly?
Patient status at hospital discharge(BMJ 27 Sept 1980)

Indep’t. Dep’nt Total no. pts

Stroke Unit 67(66%) 34 101(100%)

Medical Unit 46(51%) 45 91 (100%)

Total 113(59%) 79 192(100%)

Worked example: Stroke Unit vs. Medical Unit

95% CI for ∆π:

0.66− 0.51± z × (0.66× 0.34/101 + 0.51× 0.49/91)/2

= 0.15± 1.96× 0.07

= 0.15± 0.14.

Test ∆π = 0: [carrying several decimal places, for comparison with χ2]

z = (0.6634− 0.5054) /|; (0.5885× 0.4115× {1/101 + 1/91})1/2

= 0.1580 / 0.0711

= 2.22 → P = 0.026 (2-sided).

Worked example: Vitamin C and the common cold

95% CI for ∆π:

0.26− 0.18± z × (0.26× 0.74/407 + 0.18× 0.81/411)/2

= 0.18± 1.96× 0.03

= 0.18± 0.06.

Test ∆π = 0:

z = (0.258− 0.185) /|; (0.221× 0.779× {1/407 + 1/411})1/2

= 0.073 / 0.029

= 2.52 → P = 0.006 (1-sided) or 0.012 (2-sided).

2.4 CI for Risk Ratio (a.k.a. Relative Risk) or Preva-
lence Ratio cf. Rothman2002 p.135

Example: Vitamin C and the common cold ... Revisited

No cold ≥ 1 cold Total no. subjects
Vitamin C 105(26%) 302(74%) 407(100%)

Placebo 76(18%) 335(82%) 411(100%)
Total 181(22%) 637 818(100%)

R̂R =
Prob[ ≥ 1 cold | Vitamin C ]

Prob[ ≥ 1 cold | Placebo ]
=

74%

82%
= 0.91
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CI[RR]:

antilog{log 0.91± z × SE[log p1 − log p2]]}
= antilog{log 0.91± z × (SE2[log p1] + SE2[log p2])1/2}.

SE2[log p1] = V ar[log p1] = 1/302− 1/407 = 0.000854;

SE2[log p2] = V ar[log p2] = 1/335− 1/411 = 0.000552.

So, CI[RR]:

antilog{log 0.91± z × (0.000854 + 0.000552)1/2}
= antilog{log 0.91± 0.073} = 0.85 to 0.98.

Shortcut:

Calculate exp{z × SE[log R̂R]} and use it as a multiplier and divider of R̂R.

In our e.g., exp{z × SE[log R̂R]} = exp{0.073} = 1.076.

Thus {RRLOWER, RRUPPER} = {0.91÷1.076, 0.91×1.076} = {0.85 to 0.98}.

You can use this shortcut whenever you are working with log-based CI’s that
you convert back to the original scale, there they become “multiply-divide”
symmetric rather than “plus-minus” symmetric.

SAS Stata

PROC FORMAT; Immediate: csi 302 335 105 76

VALUE onefirst 0="z0" cs stands for ’cohort study’

1="a1";

DATA CI RR OR; input vitc cold npeople

INPUT vitC cold npeople;

LINES;

1 1 302 1 1 302

1 0 105 1 0 105

0 1 335 0 1 335

0 0 76 0 0 76

; end

PROC FREQ data=CI RR OR

ORDER=FORMATTED; cs cold vitc [freq=npeople]

TABLES vitC*cold / CMH;

WEIGHT npeople;

FORMAT vitC cold onefirst;

RUN;

2.5 CI for Odds Ratio cf. Rothman 2002 p. 139

Vitamin C Placebo
had cold(s) 302 335
avoided colds 105 76

# with cold(s) for every
1 who avoided colds 2.88 (:1) 4.41 (:1)

odds of cold(s) 2.88 4.41

odds Ratio = 2.88
4.41 = 0.65 → ÔR = 0.65

CI[OR] = antilog {log[oddsRatio]± z SE[logit1 − logit2] }

SE2[logit1] =
1

#positive1
+

1

#negative1

SE2[logit1] =
1

#positive2
+

1

#negative2

SE[logit1 − logit2] =

{(
1

302
+

1

105

)
+

(
1

335
+

1

76

)}1/2

= 0.17

z × SE[logit1 − logit2] = 1.96× 0.17 = 0.33

antilog {log 0.65± 0.33 } = exp {−0.43± 0.33} = 0.47to0.90

From SAS

See statements for RR (output gives both RR and OR)

Be CAREFUL as to rows / cols. Index exposure category must be 1st row;
reference exposure category must be 2nd.

If necessary, use FORMAT to have table come out this way ... (note trick to
reverse rows / cols)

SAS doesn’t know if it data come from a ‘case-control’ or ‘cohort’ study.
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From Stata

Immediate: cci 302 335 105 76, woolf

cc stands for ’case control study’

input vit_c cold n_people

1 1 302

1 0 105

0 1 335

0 0 76

end

cc cold vit_c [freq=n_people], woolf

3 “Test-based CI’s”

3.1 Preamble

In 1959, when Mantel and Haenszel developed their summary Odds Ratio
measure over 2 or more strata, they did not supply a CI to accompany this
point estimate. From 1955 onwards, the main competitor was the weighted
average (in the log OR scale) and accompanying CI obtained by Woolf. But
this latter method has problems with strata where one or more cell frequencies
are zero. In 1976, Miettinen developed the “test-based” method for epidemi-
ologic situations where the summary point estimate is easily calculated, the
standard error estimate is unknown or hard to compute, but where a statisti-
cal test of the null value of the parameter of interest (derived by aggregating
a “sub-statistic” from each stratum) is already available. Although the 1886
development, by Robins, Breslow and Greenland, of a direct standard error
for the log of the Mantel-Haenszel OR estimator, the “test-based” CI is still
used (see A&B KKM).

Even though its main usefulness is for summaries over strata, the idea can be
explained using a simpler and familiar (single starum) example, the compari-
son of two independent means using a z-test with large df (the principle does
not depend on t vs. z). Suppose all that was reported was the difference in
sample means, and the 2-sided p-value associated with a test of the null hy-
pothesis that the mean difference was zero. From the sample means, and the
p-value, how could we obtain a 95%CI for the difference in the ‘population’
means? The trick is to

1. work back (using a table of the normal distribution) from the p-value to
the corresponding value of the z-statistic (the number of standard errors
that the difference in sample means is from zero);

2. divide this observed difference by the observed z value, to get the standard
error of the difference in sample means, and

3. use the observed difference, and the desired multiple (1.645 for 90% CI,
1.96 for 95% etc.) to create the CI.

The same procedure is directly applicable for the difference of two indepen-
dently estimated proportions. If one tests the (null) difference using a z-test,
one can obtain the SE of the difference by dividing the observed difference
in proportions by the z statistic; if the difference was tested by a chi-square
statistic, one can obtain the z-statistic by taking the square root of the ob-
served chi-square value (authors call this square root an observed ‘chi’ value).
Either way, the observed z-value leads directly to the SE, and from there to
the CI. This is worked out in the next example, where it is assumed that the
null hypothesis is tested via a chi-squared (χ2) test.

3.2 “Test-based” CI’s ... specific applications

• Difference of 2 proportions π1 − π2 (Risk or Prevalence Difference)

Observe: p1 and p2 and (maybe via p-value) the calculated value of X2

This implies that

(observed X2 value)1/2 = observed X value = observed z value;

But... observed z statistic = (p1 − p2) / SE[p1 − p2].

So... SE[p1 − p2] = (p1 − p2) / observed z statistic {use +ve sign}

95% CI for p1 − p2:

(p1 − p2)∓ {z value for 95%} × SE[p1 − p2]

i.e. ...

(p1 − p2)∓ {z value for 95%} × p1 − p2

observed z statistic

i.e., after re-arranging terms ...

(p1 − p2)

{
1∓ z value for 95% CI

observed z statistic

}
(1a)
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or, in terms of a reported chi-squared statistic

(p1 − p2)

{
1∓ z value for 95% CI

Sqrt[observed chi− squared statistic]

}
. (1b)

See Section 12.3 of Miettinen’s “Theoretical Epidemiology”.

Technically, when the variance is a function of the parameter (as
is the case with binary response data), the test-based CI is most accurate
close to the Null. However, as you can verify by comparing test-based
CIs with CI’s derived in other ways, the inaccuracies are not as extreme
as textbooks and manuals (e.g. Stata) suggest.

• Ratio of 2 proportions π1 / π2

(Risk Ratio; Prevalence Ratio; Relative Risk; “RR”)

Observe:

1. rr = p1 / p2 and

2. (maybe via p-value) the value of X2 statistic (H0: RR = 1)
→ (observed X2value)1/2 = observed X value = observed z value.

In log scale, in relation to log[RRnull] = 0, observed z value would be:

observed z value =
log rr − 0

SE[log rr]

This implies that

SE[log rr] =
log[rr]

observed z value
{use + ve sign}

95% CI for logRR:

log rr ∓ {z value for 95% CI} × SE[log rr]

i.e. ...

log rr ∓ {z value for 95% CI} × log[rr]

observed z value

i.e., after re-arranging terms ...

log[rr]×
{

1± z value for 95% CI

observed z statistic

}
(2a)

Going back to RR scale, by taking antilogs4...

4antilog[log[a]∞b] = exp[log[a]∞b] = {exp[log[a]]} to power of b = a to power of b

95% CI for RR:

rr to power of

{
1± z value for 95%

observed z statistic

}
(2b)

• Ratio of 2 odds π1/(1− π1) and π2/(1− π2) (Odds Ratio; “OR”)

Observe:

1. or = p1/(1−p2)
p2/(1−p2) = ad

bc and

2. (maybe via p-value) the value of X2 statistic (H0: OR = 1)
→ (observed X2value)1/2 = observed X value = observed z value

In log scale, in relation to log[ORnull] = 0, observed z value would be:

observed z value =
log or − 0

SE[log or]

This implies that

SE[log or] =
log or

observed z value
use + ve sign

95% CI for logOR:

log or ∓ {z value for 95% CI} × SE[log or] (3a)

i.e. ...

log or ± {z value for 95% CI} × log or

observed z value
(3b)

i.e., after re-arranging terms ...

log or ±×
{

1± z value for 95% CI

observed z statistic

}
Going back to OR scale, by taking antilogs5...

95% CI for OR:

or to power of

{
1± z value for 95%

observed z statistic

}
See Section 13.3 of Miettinen’s “Theoretical Epidemiology”
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4 Sample Size considerations...

4.0.1 CI for π1 − π2

n’s to produce CI for difference in π’s of pre specified margin of error (ME)
at stated confidence level

• large-sample CI: p1 − p2 ± Z SE[p1 − p2] = p1 − p2 ±ME

• SE[p1 − p2] = {p1(1− p1)/n1 + p2(1− p2)/n2}1/2.
Simplify (involves some approximation) by using an average p.

If use equal n’s, then

n per group =
2× p(1− p)× Z2

α/2

ME2

M&M use the fact that if p = 1/2 then p(1−p) = 1/4, and so 2p(1−p) =
1/2, so the above equation becomes

[max] n per group =

1
2 Z

2
α/2

ME2

4.0.2 Test involving πT and πC

Test H0: πT = πC vs. Ha: πT 6= πC :

n’s for power 1− β if πT = πC + ∆; prob[Type I error] = α

n per group

=

{
Zα/2

√
2πC{1− πC} − Zβ

√
πC{1− πC}+ πT {1− πT }}2

∆2

≈ 2(Zα/2 − Zβ)2

{
π̄(1− π̄)

∆2

}
= 2

{
Zα/2 − Zβ

}2
{
σ0,1

∆

}2

(4)

If α = 0.05(2 − sided) & β = 0.2...Zα = 1.96; Zβ = −0.84, then 2(Zα/2 −
Zβ)2 = 2{1.96− (−0.84)}2 ≈ 16, i.e. n per group ≈ 16× π̄{1−π̄}

∆2 .

→ nT ≈ 100 & nC ≈ 100 if πT = 0.6 & πC = 0.4.

See Sample Size Requirements for Comparison of 2 Proportions (from text by Smith and

Morrow) under Resources for Chapter 8.

Effect of Unequal Sample Sizes (n1 6= n2) on precision of estimated
differences: See Notes on Sample Size Calculations for Inferences Concerning
Means.

4.0.3 Test involving OR

Test H0: OR = 1 vs. Ha: OR 6= OR:

n’s for power 1− β if OR = ORalt; Prob[Type I error] = α.

Work in log or scale; SE[log or] = (1/a+ 1/b+ 1/c+ 1/d)1/2.

Need
Zα/2 SE0[log or] + ZβSEalt[log or] < ∆.

where
∆ = log[ORalt]

Substitute expected a, |; b, c, d values under null and alt. into SE’s and solve
for number of cases and controls.

References: Schlesselman, Breslow and day, Volume II, ...

Key Points: log or most precise when all 4 cells are of equal size; so ...

1. increasing the control:case ratio leads to diminishing marginal gains in
precision.

To see this... examine the function

1

# of cases
+

1

multiple of this # of controls

for various values of “multiple” [cf earlier notes “effect of unequal sample sizes”]

2. The more unequal the distribution of the etiologic / preventive factor,
the less precise the estimate

Examine the functions

1/(no. of exposed cases) + 1/(no. of unexposed cases)

and

1/(no. of exposed controls) + 1/(no. of unexposed controls).
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Add-ins for M&M §8 and  §9 statistics for epidemiology

Factors affecting variability of estimates from, and statistical power of, case-control studies

OR

3.375

2.25

1.5

1

3.375

2.25

1.5

1

3.375

2.25

1.5

1
0.25 0.5 1 2 4 8

or

Cases: 100  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 100  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 100  Exposure Prevalence: 2%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 2%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 2%

jh 1995-2003

page  11
Reading graphs: (Note log scale for observed or). Take as an example the study in

the middle panel, with 200 cases, and an exposure prevalence of 8%. Say that the Type I

error rate is set at α = 0.05 (2-sided) so that the upper critical value (the one that cuts

off the top 2.5% of the null distribution) is close to or = 2. Draw a vertical line at this

critical value, and examine how much of each non-null distribution falls to the right of this

critical value. This area to the right of the critical value is the power of the study, i.e.,

the probability of obtaining a significant or, when in fact the indicated non-null value of

OR is correct. Two curves at each OR value are for studies with 1(grey) and 4(black)

controls/case. Note that OR values 1, 1.5, 2.25 and 3.375 are also on a log scale.

5

5Power larger if ... 1. non-null OR >> 1 (cf. 2.5 vs 2.25 vs 3.375); 2 exposure
common (cf. 2% vs 8% vs 32%) and not near universal; 3 use more cases (cf. 100 vs. 200
vs. 400), and controls/case (1 vs 4).
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5 Small sample methods:

Test:

Since a risk difference of zero implies a risk ratio, or odds ratio, of 1, all three
can be tested in the same way.

U (unconditional)
Suissa S; Shuster JJ. Exact Unconditional Sample Sizes for the 2× 2 Bi-
nomial Trial; Journal of the Royal Statistical Society. Series A (General)
Vol. 148, No. 4 (1985), pp. 317-327.

C (conditional)
Fisher 1935, JRSS Vol 98, p 48. (central) Hypergeometric distribution,
obtained by conditioning on (treating as fixed) all marginal frequencies.

Confidence Interval:

5.1 Risk Difference

See section 3.1.2 of Sahai and Khurshid (1996).

5.2 Risk Ratio

See section 3.1.2 of Sahai and Khurshid (1996).

5.3 Odds Ratio: Point- and Interval-estimation

See section 4.1.2 of Sahai and Khurshid (1996), and Chapter of Volume I of
Breslow and Day. See also example 1, pp 48-51, in Fisher 1935.

Elaboration on equation 4.11 in Sahai and Khurshid , and on the (what we
now call the non-central hypergeometric random variable whose distribution
is given in the middle of p 50 of Fisher’s article.

Let Yi ∼ Binomial(ni, πi), i = 1, 2, be 2 independent binomial random vari-
ables.

We wish to make inference regarding the parameter

ψ = {π1/(1− π1}/{π2/(1− π2}.

We can do so by considering only those data configurations which have the
same total number of ‘positives’, y1 + y2 = y, say, as were observed in the
actual study, and then considering the distribution of Y1 | y.

Prob[Y1 = y1 ; Y2 = y2] = n1Cy1 π
y1
1 (1− π1)n1−y1 × n2Cy2 π

y2
2 (1− π2)n2−y2 .

If we condition on Y1 + Y2 = y, then

Prob[Y1 = y1 | Y1 + Y2 = y] = Prob[Y1 = y1 ; Y2 = y − y1]/Prob[Y1 + Y1 = y].

If we rewrite the quantity

πy11 (1− π1)n1−y1 × πy22 (1− π2)n2−y2

as
πy11 (1− π1)−y1π−y22 (1− π2)y1 × (1− π1)n1πy2 (1− π2)n−y

we see that it simplifies to

ψy1 × (1− π1)n1 πy2 (1− π2)n−y

and that the last three terms do not involve ψ and do not involve the random
variable y1. Since they appear in both the numerator and the denominator of
the conditional probability, they cancel out.

This we can write the conditional probability Prob[Y1 = y1 | Y1 + Y2 = y] as

Prob[ y1 | y ] = n1Cy1
n2Cy−y1 ψ

y1 / Σ n1Cy′1
n2Cn−y′1 ψ

y′1 ,

where the summation is over those y′1 values that are compatible with the 4
marginal frequencies.

Aside: you will note that if we set ψ = 1, the probabilities are the same as
those in the central hypergeometric distribution, used for Fisher’s exact test
of two binomial proportions. Indeed, Fisher, in page 48-49 of his 1935 paper,
first computes the null probabilities for the 2× 2 table.

Conviction of Like-sex Twins of Criminals

Convicted. Not Convicted. Total.
Monozygotic 10(a) 3(b) 13
Dizygotic 2(c) 15(d) 17
Total 12 18 30
[We use y1 and y2 where epidemiologists typically use a and c.]
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He calculated that the probability that 1, 2, 3, . . .monozygotic twins would
escape conviction6 was (1/6 652 325)×{1, 102, 2992, ...}. Thus, “a discrepancy
from proportionality as great or greater than that observed, will arise, subject
to the conditions specified by the ancillary information, in exactly 3,095 trials
out of 6,652,325 or approximately once in 2,150 trials.”

He then went on to work out the lower limit of the 90% 2-sided CI (or a 95%
1-sided CI), for the odds ratio: i.e. for the odds, πmono−z/(1 − πmono−z), of
criminals to non-criminals in twins of monozygotic criminals divided by the
corresponding odds πdi−z/(1− πdi−z), in twins of dizygotic criminals.

Let Ymono be the number of MZ twins convicted. Fisher finds the value ψL
such that

Prob[ Ymono ≥ 10 | ψL , y = 12 ] = 0.05.

He reports that this value is 1/0.28496 ≈ 3.509. In the Excel spreadsheet
for Fisher’s exact test and exact CI for OR (on website), you can verify that
indeed, with ψL = 3.509, P rob[ Ymono ≥ 10 | ψ = 3.509 , y = 12 ] = 0.05.

One has to admire Fisher’s ability, in 1935, to solve a polynomial equation of
order 12, namely

1 + 102ψ + 2992ψ2

1 + 102ψ + 2992ψ2 + · · ·+ 476ψ12
= 0.05.

5.3.1 Point estimation of ψ under Hypergeometric Model

See section x.x of Breslow and Day, Volume I.

It will come as a surprise to many that there are 2 point estimators of ψ:

one, the familiar – unconditional – based on the “2 independent Binomials”
model, with two random variables y1 and y2, and

the other – conditional – based on the single random variable y1 | y with a
Non-Central Hypergeometric distribution.

While the two estimators yield similar estimates when sample sizes are large,
the estimates can be quite different from each other in small sample situations.

Estimator, based on Unconditional Approach:

The estimator derives from the principle that if there are two parameters θ1

and θ2, with Maximum Likelihood Estimators θ̂1 and θ̂2, then the Maximum
Likelihood Estimator of θ1/θ2 is θ̂1/θ̂2.

6the range is 1 to 13; 0 cannot escape, since then there would be 13 convicted in the
first row, but there are only 12 convicted in all.

Thus, since π̂1 = 10/13, and π̂2 = 2/17, we have

ψ̂UMLE =
(10/13)/(2/13)

(2/17)/(15/17)
=

10× 15

3× 2
= 25 =

a× d
b× c

.

Estimator, based on Conditional Approach:

The Maximum Likelihood Estimate ψ̂CMLE is the solution of d logL/dψ = 0.

If we use Σ as shorthand for the denominator of prob[ y1 | y ], then ψ̂CMLE is
the solution of

y1

ψ
=
d log Σ

dψ
=
dΣ

dψ
× 1

Σ
.

Re-arranging, we find that ψ̂CMLE is the solution of

y1 = E[ Y1 | ψ ].

In this case the CMLE of ψ is the same as the estimate obtained by equating
the observed and expected moment (the “Method of Moments”).

Using the same spreadsheet used above, we find that the value of ψ that
satisfies this estimating equation is

ψ̂CMLE = 21.3.

It can be shown that, in any given dataset, ψ̂CMLE is closer to the null (i.e.,

to ψ = 1) than the ψ̂MLE is. Indeed, it the CMLE can be can be seen as a
UMLE that has been shrunk towards the null.7

8

7See Hanley JA, Miettinen OS. An Unconditional-like Structure for the Conditional
Estimator of Odds Ratio from 2 x 2 Tables. Biometrical Journal 48 (2006) 1, 2334 DOI:
10.1002/bimj.200510167

8[Notes from JH]:

• The 5 tables from the tea-tasting experiment with the 2x2 tables with all marginal
totals = 4 are another example of this hypergeometric distribution

• Excel has the Hypergeometric probability function. It is like the Binomial , except that
instead of specifying p, one specifies the size of the POPULATION and the NUMBER
OF POSITIVES IN THE POPULATION .. example, to get P1 above, one would ask
for HYPERGEODIST(a;r1;c1;N)
The spreadsheet “Fisher’s Exact test” uses this function; to use the spreadsheet,
simply type in the 4 cell frequencies, a, b, c, and d. the spreadsheet will calculate the
probability for each possible table. then you can find the tail areas yourself. You can
also use it for the non-null (non-central) hypergeometric distribution.

9
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5.4 The “Exact” Test for 2 x 2 tables

5.4.1 Material taken from Armitage & Berry §4.9.
Material on hand-calculation of null probabilities is omitted

Even with the continuity correction there will be some doubt about the ad-
equacy of the χ2 approximation when the frequencies are particularly small.
An exact test was suggested almost simultaneously in the mid-1930s by R.
A. Fisher, J. O. Irwin and F. Yates. It consists in calculating the exact
probabilities of the possible tables described in the previous subsection. The
probability of a table with frequencies

a b r1

c d r2

c1 c2 N

is given by the formula

P [a|r1, r2, c1, c2] =
r1!r2!r3!r4!

N !a!b!c!d!
(5)

This is, in fact, the probability of the observed cell frequencies conditional
on the observed marginal totals, under the null hypothesis of no association
between the row and column classifications. Given any observed table, the
probabilities of all tables with the same marginal totals can be calculated, and
the P value for the significance test calculated by summation. Example 4.14
illustrates the calculations and some of he difficulties of interpretation which
may arise. The data in Table 4.6, due to M. Hellman, are discussed by Yates
(1934).

Table 1: Data on malocclusion of teeth in infants (Yates, 1934)

Infants with
Normal teeth Malocclusion Total

Breast-fed 4 16 20
Bottle-fed 1 21 22

Total 5 37 42

There are six possible tables with the same marginal totals as those observed.
since neither a nor c (in the notation given above) can fall below 0 or exceed
5, the smallest marginal total in the table. The cell frequencies in each of

Table 2: Cell frequencies in tables with the same marginal totals as those in
Table 1

0 20 20 1 19 20 2 18 20 3 17 20 4 16 20
5 17 22 4 18 22 3 19 22 2 20 22 1 21 22
5 37 42 5 37 42 5 37 42 5 37 42 5 37 42

a 0 1 2 3 4
Pa 0.1720 0.3440 0.3096 0.1253 0.0182

these tables are shown in Table 2 Below them are shown the probabilities of
these tables, calculated under the null hypothesis.

Table 2 continued ...

5 15 20
0 22 22
5 37 42

a 5
Pa 0.0182

This is the complete conditional distribution for the observed marginal totals,
and the probabilities sum to unity as would be expected. Note the impor-
tance of carrying enough significant digits in the first probability to be calcu-
lated; the above calculations were carried out with more decimal places than
recorded by retaining each probability in the calculator for the next stage.
The observed table has a probability of 0.1253. To assess its significance we
could measure the extent to which it falls into the tail of the distribution
by calculating the probability of that table or of one more extreme. For a
one-sided test the procedure clearly gives P = 0.1253 + 0.0182 = 0.1435. The
result is not significant at even the 10% level.

For a two-sided test the other tail of the distribution must be taken into
account, and here some ambiguity arises. Many authors advocate that the
one-tailed P value should be doubled. In the present example, the one-tailed
test gave P = 0.1435 and the two-tailed test would give P = 0.2870. An
alternative approach is to calculate P as the total probability of tables, in
either tail, which are at least as extreme as that observed in the sense of
having a probability at least as small. In the present example we should have

P = 0.1253 + 0.0182 + 0.0310 = 0.1745

The first procedure is probably to be preferred on the grounds that a signif-
icant result is interpreted as strong evidence for a difference in the observed
direction, and there is some merit in controlling the chance probability of such

10
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a result to no more than half the two-sided significance level.

The results of applying the exact test in this example may be compared
with those obtained by the χ2 test with Yates’s correction. We find X2 =
2.39, (P = 0.12) without correction and X2

C = 1.14, (P = 0.29) with cor-
rection. The probability level of 0.29 for X2

C agrees well with the two-sided
value 0 29 from the exact test, and the probability level of 0.12 for X2 is a
fair approximation to the exact mid-P value of 0.16.

Cochran (1954) recommends the use of the exact test, in preference to the X2

test with continuity correction, (i) if N < 20, or (ii) 20 < N < 40 and the
smallest expected value is less than 5. With modern scientific calculators and
statistical software the exact test is much easier to calculate than previously
and should be used for any table with an expected value less than 5.

The exact test and therefore the χ2 test with Yates’s correction for continuity
have been criticized over the last 50 years on the grounds that they are conser-
vative in the sense that a result significant at, say, the 5% level will be found
in less than 5% of hypothetical repeated random samples from a population
in which the null hypothesis is true. This feature was discussed in §4.7 and
it was remarked that the problem was a consequence of the discrete nature of
the data and causes no difficulty if the precise level of P is stated. Another
source of criticism has been that the tests are conditional on the observed
margins, which frequently would not all be fixed. For example, in Example
4.14 one could imagine repetitions of sampling in which 20 breast-fed infants
were compared with 22 bottle-fed infants but in many of these samples the
number of infants with normal teeth would differ from 5. The conditional
argument is that, whatever inference can be made about the association be-
tween breast-feeding and tooth decay, it has to be made within the context
that exactly five children had normal teeth. If this number had been different
then the inference would have been made in this different context, but that
is irrelevant to inferences that can be made when there are five children with
normal teeth. Therefore, we do not accept the various arguments that have
been put forward for rejecting the exact test based on consideration of possible
samples with different totals in one of the margins. The issues were discussed
by Yates 1984) and in the ensuing discussion, and by Barnard (1989) and
Upton (1992), and we will not pursue this point further. Nevertheless, the
exact test and the corrected χ2 test have the undesirable feature that the av-
erage value of the significance level, when the null hypothesis is true, exceeds
0.5. The mid-P value avoids this problem, and so is more appropriate when
combining results from several studies (see §4.7).

As for a single proportion, the mid-P value corresponds to an uncorrected
χ2 test, whilst the exact P value corresponds to the corrected χ2 test. The

confidence limits for the difference, ratio or odds ratio of two proportions
based on the standard errors given by (4.14), (4.17) or (4.19) respectively are
all approximate and the approximate values will be suspect if one or more
of the frequencies in the 2 x 2 table are small. Various methods have been
put forward to give improved limits but all of these involve iterations and are
tedious to carry out on a calculator. The odds ratio is the easiest case. Apart
from exact limits, which involve an excessive amount of calculation, the most
satisfactory limits are those of Cornfield ( 1956); see Example 16.1 and Breslow
and Day (1980, §4.3) or Fleiss ( 1981, §5.6). For the ratio of two proportions
a method was given by Koopman (1984) and Miettinen and Nurminen (1985)
which can be programmed fairly readily. The confidence interval produced
gives a good approximation to the required confidence coefficient, but the two
tail probabilities are unequal due to skewness. Gart and Nam (1988) gave
a correction for skewness but this is tedious to calculate. For the difference
of two proportions a method was given by Mee (1984) and Miettinen and
Nurminen (1985). This involves more calculation than for the ratio limits,
and again there could be a problem due to skewness (Gart and Nam, 1990).

Notes by JH

• The word “exact” means that the p-values are calculated using a finite
discrete reference distribution – the hypergeometric distribution (cousin
of the binomial) rather than using large-sample approximations. It
doesn’t mean that it is the correct test. [see comment by A&B in their
section dealing with Mid-P values].

While greater accuracy is always desirable, this particular test uses a
’conditional’ approach that not all statisticians agree with. Moreover,
compared with some unconditional competitors, the test is somewhat
conservative, and thus less powerful, particularly if sample sizes are very
small.

• Fisher’s exact test is usually used just as a test*; if one is interested
in the difference ∆ = π1π2 , the conditional approach does not yield
a corresponding confidence interval for ∆. [it does provide one for the

comparative odds ratio parameter ψ = π1/(1−π1

π2/(1−π2
.

• Thus, one can find anomalous situations where the (conditional) test
provides P > 0.05 making the difference ‘not statistically significant’,
whereas the large-sample (unconditional) CI for ∆, computed as p1 −
p2 ± z SE(p1 − p2), does not overlap 0, and so would indicate that the
difference is ’statistically significant’. [* see the Breslow and Day text
Vol I , §4.2, for CI’s for ψ derived from the conditional distribution]

11
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• See letter from Begin & Hanley re 1/20 mortality with pentamidine vs
5/20 with Trimethoprim-Sulfamethoxazole in patients with Pneumocystis
carinii Preumonia-Annals Int Med 106 474 1987.

• Miettinen’s test-based method of forming CI’s, while it can have some
drawbacks, keeps the correspondence between test and CI and avoids
such anomalies.

• This illustrates one important point about parameters related to binary
data – with means of interval data, we typically deal just with differ-
ences*; however, with binary data, we often switch between differences
and ratios, either because the design of the study forces us to use odds
ratios (case-control studies), or because the most readily available re-
gression software uses a ratio (i.e. logistic regression for odds ratios) or
because one is easier to explain that the other, or because one has a more
natural interpretation (e.g. in assessing the cost per life saved of a more
expensive and more efficacious management modality, it is the difference
in, rather than the ratio of, mortality rates that comes into the calcu-
lation). [* the sampling variability of the estimated ratios of means of
interval data is also more difficult to calculate accurately].

6 (Mis-)Application; Costly Application

6.1 Fisher’s Exact Test in a Double-Blind study of
Symptom Provocation to Determine Food Sensitiv-
ity (N Engl J Med 1990; 323: 429-33)

Abstract

Background Some claim that food sensitivities can best be identified by
intradermal injection of extracts of the suspected allergens to reproduce the
associated symptoms. A different dose of an offending allergen is thought to
“neutralize” the reaction.

Methods To assess the validity of symptom provocation, we performed a
double-blind study that was carried out in the offices of seven physicians who
were proponents of this technique and experienced in its use. Eighteen pa-
tients were tested in 20 sessions (two patients were tested twice) by the same
technician, using the same extracts (at the same dilutions with the same saline
diluent) as those previously thought to provoke symptoms during unblinded
testing. At each session three injections of extract and nine of diluent were

given in random sequence. The symptoms evaluated included nasal stuffi-
ness, dry mouth, nausea, fatigue, headache, and feelings of disorientation or
depression. No patient had a history of asthma or anaphylaxis.

Results The responses of the patients to the active and control injections
were indistinguishable, as was the incidence of positive responses: 27 percent
of the active injections (16 of 60) were judged by the patients to be the active
substance, as were 24 percent of the control injections (44 of 180). Neutralizing
doses given by some of the physicians to treat the symptoms after a response
were equally efficacious whether the injection was of the suspected allergen or
saline. The rate of judging injections as active remained relatively constant
within the experimental sessions, with no major change in the response rate
due to neutralization or habituation.

Conclusions When the provocation of symptoms to identify food sensitivities
is evaluated under double-blind conditions, this type of testing, as well as the
treatments based on “neutralizing” such reactions, appears to lack scientific
validity. The frequency of positive responses to the injected extracts appears
to be the result of suggestion and chance

Calculated according to Fisher’s exact test, which assumes that the hypothesized direction

of effect is the same as the direction of effect in the data. Therefore, when the effect is

opposite to the hypothesis, as it is for the data below those of Patient 9, the P value

computed is testing the null hypothesis that the results obtained were due to change as

compared with the possibility that the patients were more likely to judge a placebo injection

as active than an active injection.

12
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Responses of 18 Patients Forced to Decide Whether Injections Contained an
Active Ingredient or Placebo

Pt. Active Placebo P
No* Injection Injection Value

resp no resp resp no resp
3 2 1 1 8 0.13
1 2 1 2 7 0.24

14a 2 1 2 7 0.24
12 1 2 0 9 0.25
16 2 1 3 6 0.36

18 2 1 4 5 0.50
14b 1 2 2 7 0.87
4 1 2 2 7 0.87
5 1 2 2 7 0.87
9 0 3 0 9 —

2a 0 3 1 8 0.75
13 0 3 1 8 0.75
15 1 2 3 6 0.76
6 0 3 2 7 0.55
8 0 3 2 7 0.55

17 1 2 5 4 0.50
2b 0 3 3 6 0.38
7 0 3 3 6 0.38
10 0 3 3 6 0.38
11 0 3 3 6 0.38

*Patients were numbered in the order they were studied

The order in the table is related to the degree that the results agree with
the hypothesis that patients could distinguish active injections from placebo
injections. The results listed below those of Patient 9 do not support this
hypothesis, placebo injections were identified as active at a higher rate than
were true active injections. The letters a and b denote the first and second
testing sessions, respectively, in Patients 2 and 14. true active injections. ID
denotes intradermal, and SC subcutaneous.

The value is the P value associated with the test of whether the common odds
ratio (the odds ratio for all patients) is equal to 1.0. The common odds ratio
was equal to 1.13 (computed according to the Mantel-Haenszel test).

Notes on P-Values from Fisher’s Exact Test in above article

Patient number 3:

Response
+ - Total

Active Injection 2 1 3
Placebo Injection 1 8 9

3 9

All possible tables with a total of 3 +ve responses

0 3 1 2 2 1 3 0
3 6 2 7 1 8 0 9

Prob 9×8×7
12×11×10 0.382× 3×3

1×7 0.491× 2×2
2×8 0.123× 1×1

3×9

= 0.382 = 0.491 = 0.123 = 0.005
(pt #) (2b, 7, 10, 11) (14b, 4, 5) (3)

P-Value* 1.0 0.618 0.128 0.005

Patient number 1:

Response
+ - Total

Active Injection 2 1 3
Placebo Injection 2 7 9

4 8

All possible tables with a total of 4 +ve responses

0 3 1 2 2 1 3 0
4 5 3 6 2 7 1 8

Prob 8×7×6
12×11×10 0.255× 3×4

1×6 0.510× 2×3
2×7 0.218× 1×2

3×8

= 0.255 = 0.510 = 0.218 = 0.018
(pt #) (15) (1, 14a)

P-Value 1.0 0.745 0.236 0.018

*1-sided, guided by Halt:

π of +ve responses with Active > π of +ve responses with Placebo.
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Patient number 18:

Response
+ - Total

Active Injection 2 1 3
Placebo Injection 4 5 9

6 6

All possible tables with a total of 6 +ve responses

0 3 1 2 2 1 3 0
6 3 5 4 4 5 3 6

Prob 6×5×4
12×11×10 0.091× 3×6

1×4 0.409× 2×5
2×5 0.409× 1×4

3×6

= 0.091 = 0.409 = 0.409 = 0.091
(pt #) (17) (18)

P-Value 1.0 0.909 0.500 0.091
(1-sided, as above)

In the Table, the P-values for patients below patient 9 are calculated
as 1-sided, but guided by the opposite Halt from that used for the
patients in the upper half of the table, i.e. by

Halt:

π of +ve responses with Active < π of +ve responses with Placebo.

It appears that the authors decided the “sided-ness” of theHalt after observing
the data!!!

And they used different Halt for different patients!!!

Message: Tail areas for this test are tricky: it is best to lay out all the tables,
so that one is clear which tables are being included in which tail!

6.2 Fisher’s Exact Test and Rhinoceroses

Note: The Namibian government expelled the authors from Namibia follow-
ing the publication of the following article; the reason given was that their
“data and conclusions were premature.”

Since 1900 the world’s population has increased from about 1.6 to over 5
billion) the U.S. population has kept pace, growing from nearly 75 to 260
million. While the expansion of humans and environmental alterations go
hand in hand, it remains uncertain whether conservation programs will slow
our biotic losses. Current strategies focus on solutions to problems associated
with diminishing and less continuous habitats, but in the past, when habi-
tat loss was not the issue, active intervention prevented extirpation. Here
we briefly summarize intervention measures and focus on tactics for species
with economically valuable body parts, particularly on the merits and pit-
falls of biological strategies tried for Africa’s most endangered pachyderms,
rhinoceroses.

[ ... ]

Given the inadequacies of protective. legislation and enforcement, Namibia.
Zimbabwe, and Swaziland are using a controversial preemptive measure, de-
horning (Fig. D) with the hope that complete devaluation will buy time for
implementing other protective measures (7) In Namibia and Zimbabwe, two
species, black and white rhinos (Ceratotherium simum), are dehorned, a tac-
tic resulting in sociological and biological uncertainty: Is poaching deterred?
Can hornless mothers defend calves from dangerous predators?

On the basis of our work in Namibia during the last 3 years (8) and compar-
ative information from Zimbabwe, some data are available. Horns regenerate
rapidly, about 8.7 cm per animal per year, so that 1 year after dehorning
the regrown mass exceeds 0.5 kg. Because poachers apparently do not prefer
animals with more massive horns (8), frequent and costly horn removal may
be required (9). In Zimbabwe, a population of 100 white rhinos, with at least
80 dehorned, was reduced to less than 5 animals in 18 months (10). These
discouraging results suggest that intervention by itself is unlikely to eliminate
the incentive for poaching. Nevertheless, some benefits accrue when govern-
ments, rather than poachers, practice horn harvesting, since less horn enters
the black market Whether horn stockpiles may be used to enhance conser-
vation remains controversial, but mortality risks associated with anesthesia
during dehorning are low (5).

Biologically, there have also been problems. Despite media attention and
a bevy of allegations about the soundness of dehorning ( 11 ), serious at-
tempts to determine whether dehorning is harmful have been remiss. A lack
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of negative effects has been suggested because (i) horned and dehorned indi-
viduals have interacted without subsequent injury; (ii) dehorned animals have
thwarted the advance of dangerous predators; (iii) feeding is normal; and (iv)
dehorned mothers have given birth (12) However, most claims are anecdotal
and mean little without attendant data on demographic effects. For instance,
while some dehorned females give birth, it may be that these females were
pregnant when first immobilized. Perhaps others have not conceived or have
lost calves after birth. Without knowing more about the frequency of mortal-
ity, it seems premature to argue that dehorning is effective. We gathered data
on more than 40 known horned and hornless black rhinos in the presence and
absence of dangerous carnivores in a 7,000 km2 area of the northern Namib
Desert and on 60 horned animals in the 22,000 km2 Etosha National Park.
On the basis of over 200 witnessed interactions between horned rhinos and
spotted hyenas (Crocura crocura) and lions (Panthera leo) we saw no cases
of predation, although mothers charged predators in about 45% of the cases.
Serious interspecific aggression is not uncommon elsewhere in Africa, and
calves missing ears and tails have been observed from South Africa, Kenya,
Tanzania, and Namibia (13).

To evaluate the vulnerability of dehorned rhinos to potential preda-
tors, we developed an experimental design using three regions:

• Area A had horned animals with spotted hyenas and occasional lions

• Area B had dehorned animals lacking dangerous predators,

• Area C consisted of dehorned animals that were sympatric with hyenas
only.

Populations were discrete and inhabited similar xeric landscapes that averaged
less than 125 mm of precipitation annually. Area A occurred north of a
country long veterinary cordon fence, whereas animals from areas B and C
occurred to the south or east, and no individuals moved between regions.

The differences in calf survivorship were remarkable. All three calves in area
C died within 1 year of birth, whereas all calves survived for both dehorned
females living without dangerous predators (area B; n = 3) and for horned
mothers in area A (n = 4). Despite admittedly restricted samples, the
differences are striking [Fisher’s (3 x 2) exact test, P = 0.017; area B versus
C, P = 0.05; area A versus C, P = 0.0291 ††. The data offer a first assessment
of an empirically derived relation between horns and recruitment.

Our results imply that hyena predation was responsible for calf deaths, but
other explanations are possible. If drought affected one area to a larger extent
than the others, then calves might be more susceptible to early mortality.

This possibility appears unlikely because all of western Namibia has been
experiencing drought and, on average, the desert rhinos in one area were in
no poorer bodily condition than those in another. Also, the mothers who lost
calves were between 15 to 25 years old, suggesting that they were not first
time, inexperienced mothers (14). What seems more likely is that the drought
induced migration of more l than 85% of the large, herbivore biomass (kudu,
springbok, zebra, gemsbok, giraffe, and ostrich) resulted in hyenas preying on
an alternative food, rhino neonates, when mothers with regenerating horns
could not protect them.

Clearly, unpredictable events, including drought, may not be anticipated on
a short-term basis. Similarly, it may not be possible to predict when gov-
ernments can no longer fund antipoaching measures, an event that may have
led to the collapse of Zimbabwe’s dehorned white rhinos. Nevertheless, any
effective conservation actions must account for uncertainty. In the case of
dehorning, additional precautions must be taken. [ ... ]

A B C
survived 4 3 0

died 0 0 3
4 3 3

††

B vs C

B C B C B C B C total*
survived 3 0 2 1 1 2 0 3 3

died 0 3 1 2 2 1 3 3 3
3 3 3 3 3 3 3 3

A vs C

A C A C A C A C total*
survived 4 0 3 1 2 2 1 3 4

died 0 3 1 2 2 1 3 3 3
4 3 4 3 4 3 4 3

Prob 1
35

12
35

18
35

4
35

“Data and conclusions were premature.”

Agree?
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0 Exercises

0.1 Questions re van Belle et al.

1. From Problems 6.1 to 6.30, find 1 that involves (i) a test of a single
proportion (ii) a CI for a single proportion (iii) a test of the equality of
two proportions, a CI for (iv) a RD (v) a Risk Ratio and (vi) an Odds
Ratio.

2. Problem 6.1(b) raises a subtle and important point, but does not say why
the requested probability calculation helps in evaluating the complaint.
Explain what is the appropriate probability to calculate in order to judge
if the clinic’s complaint is valid.

0.2 Sample size to assess risk of abortion after chorionic
villus sampling

The following letter is by Holzgreve et al. to The Lancet (p. 223, January
26, 1985). They use symbols P1 and P2 in the same way we use the Greek
(for “population” or “parameter”) symbols “π1” and “π1”. Also, they use the
term ‘rate’ where we might use ‘proportion’ and they use it as a percentage
i.e., their P2 = 4.4% is our P2 = 0.044. Note also that in the 1st sentence at
the top of the page, they reverse the 2 subscripts. The correct subscripts are
those used later on i.e., 1= ultrasonically normal pregnancies and 2=chorionic
villous biopsy (cvb). Below, lower case p is used for a proportion observed in
a sample, i.e., the ‘statistic.’

We agree with Dr Wilson and colleagues (Oct 20, p 920) that back-
ground rates of spontaneous abortion in ultrasonically normal preg-
nancies are an important requirement for evaluating the of chorionic
villus sampling in the first trimester. For an unbiased assessment of
the risk of spontaneous abortion with this new method of prenatal
diagnosis, however, the rate of fetal losses should be compared with
matched pregnancies without invasive procedures in a prospective,
randomised trial.

To be able to state with confidence that the fetal loss rate in a group
of patients (P ) after chorionic villus biopsy differs from that in a
control group of ultrasonically normal pregnancies (P2) we have cal-
culated the required sample size for the two populations, based on
a probability of a type I error (α) of 1% and of a type II error (b)

of 10%. The most recent international surveyref revealed a spon-
taneous abortion rate of about 4.4% after chorionic villus sampling,
and this was the figure we used for the rate in P2 when calculat-
ing sample sizes by the Fleiss formula, the arc-sine formula, and the
formula of Casagrande, Pike, and Smith9 for different assumed risk
figures for P1:

P1 P2 Fleiss Arcsine Casagrande
4.0 4.4 654,33 65,965 75,831
3.0 4.4 4,691 4872 5,690
4.1 4.4 117,677 118,376 135 884
2.5 4.4 2,357 2,504 2,950

These calculations show that if chorionic villus biopsy increases the
spontaneous abortion rate by 0.4%, which would be equivalent to
the risk for second-trimester amniocentesis, about 69,000 pregnan-
cies would be required in each group. The background rate of sponta-
neous abortion in the first trimester strongly influences the required
numbers of patients – e.g. a drop to about 2,600 patients in the
two groups if the difference in abortion rates is about 2%. Even
though the numbers required to achieve statistical significance are
large, a study with matched controls allows a more meaningful state-
ment about the added risk of spontaneous abortion after chorionic
villus biopsy than the mere comparison with fetal loss rates in ultra-
sonically normal pregnancies now available. Only a well-designed,
statistically sound, multicentre (preferably international) study can
answer the very important questions about the safety of chorionic
villus sampling.
W. Holzgreve. Women’s Clinic, Dept Biomed. Statistics & Inst of
Human Genetics, Westphalian Wilhelma Uni., Munster, Germany.

Questions on above letter:

1. Why do the authors propose a 2-sample study? i.e., why not compare the
proportion, p2, of fetal losses observed following cvb in a single sample of
n2 pregnancies, against a “background rate” of P1 = 3.7? Assume that
this 3.7 is the figure they would have obtained by combining data from
the literature, consulting experts, etc.

2. What form would the data-analysis of such a “one-arm” study take? Use
a numerical example with n2 = 500 to illustrate.

9Fleiss JL Statistical Methods for Rates an Proportions, 1973.
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3. Calculate the required sample size for such a “one-arm” study, using the
same α and β as they did (cf. Notes, or vanBelle, or Colton p161).

4. What form will the data-analysis of the “two-arm” study proposed by the
authors take? Use a numerical example with n1 = n2 = 500 to illustrate.

5. Calculate the required sizes n1 and n2 for this study that the authors
propose (cf Notes, or vanBelle, or Colton p168). Use P1 = 3.0 (3rd row
of table) and the same α and β. Note that the sample sizes may differ
somewhat depending on the method of analysis, and on the formula used.

6. Assume that a study of this size has been done and that the observed
losses were p1 = 3.8% and p2 = 4.3%. What do you conclude? Use
language that is understandable to those who will need to understand it.

7. In the now-completed Canadian collaborative trial of cvb, the investi-
gators plan to analyze the difference in all fetal losses and so are using
P1 = 6.6% and P2 = 9.5% in their calculations. They used α = 0.05 and
β = 0.20. What impact do these design differences have on sample size?
Full calculations are not required.

0.3 Analysis of un-matched case-control studies

A 1982 Swedish study (Arch. Env. Health, March/April 1982, p.81-) ex-
amined the association between exposure of female physiotherapists to non-
ionizing radiations (shortwaves, microwaves,.) and the risk in subsequently
delivered infants of a serious malformation or perinatal death. Two series of
working physiotherapists were compared: (Y = 1) the 33 mothers of the (33)
infants who were born with serious malformations or who died perinatally;
and (Y = 0) the (66) mothers of 66 randomly chosen “normal” infants. The
resulting data, presented in a somewhat simplified form for this exercise, are:

Y Y
Shortwave Use 1 0 Microwave Use* 1 0
never/seldom 24 54 never 29 63
often/daily 9 9 sometimes 4 0

* data missing on 3 mothers for whom Y = 0.

1. What comparative parameter can one estimate from these data? Think of
the Y = 1 data as coming from the numerator series; think of the Y = 0
data as coming from the denominator series that supplies estimates of the
fractions of the source population that are in the higher- and lower-use
categories.

2. For each the two exposures, what is the point-estimate of this parameter?

3. Derive a 95% CI for the parameter, by “Woolf’s” method for shortwave,
the exact conditional method (Fisher) for microwave (see spreadsheet).

4. Perform a 2-sided test of significance to test the null hypothesis of no as-
sociation between each of the two exposures and the subsequent delivery
outcome.

0.4 A simple way to improve the chances for acceptance
of your scientific paper

To the Editor: During the past few years we have witnessed a revolution
in the way manuscripts, abstracts, and grant proposals are being typed.
With improved typewriters and computer programs it is possible to produce
manuscripts of typeset quality. It is generally assumed that data should be
judged by its scientific quality and that this judgment should not be influenced
by typing style.

I challenged this premise by analyzing the rate of acceptance of abstracts by
a large national meeting. All abstracts submitted to the 1986 annual meet-
ing of the American Pediatric Society and the Society of Pediatric Research
(APS/SPR) appeared in Volume 20, No. 4 (Part 2) (April 1986) of Pedi-
atric Research. Contrary to the practice of many other meetings, this volume
also includes all the abstracts that were not accepted for presentation, and
accepted papers are identified by symbols.

Abstracts were defined as “regularly typed” or “typeset printed.” Each ab-
stract was categorized as accepted if chosen for presentation or rejected.

A total of 1965 abstracts were evaluated. Excluded were 47 abstracts as-
signed for joint internal medicine-pediatric presentation, because the majority
of them were submitted to the meeting of the American Federation for Clin-
ical Research, and there was no indication of their rejection rate; only those
that had been accepted appeared in the APS/SPR book of abstracts.

Of the 1918 evaluable abstracts, 1706 were regularly typed and 212 were
“typeset.” The acceptance rate was significantly higher for the “typeset”
abstracts: 107 of 212 (51.4 percent) vs. 747 of 1706 (44 percent) (P<0.05).

Eighty-eight investigators submitted five or more abstracts to the meeting.
Here, too, there was a higher rate of acceptance for the “typeset” abstracts
(62 of 107:57.9 percent) as compared with the regularly typed abstracts (184
of 451:40.8 percent) (P = 0.002).
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One may argue that investigators who can afford the new equipment for print-
ing abstracts have more money and can afford better research, and therefore
that their abstracts are accepted at higher rates. To explore this possibility.
I analyzed data on the 15 investigators who submitted five or more abstracts
each and who used both typing methods. In this subgroup, 19 or 55 regu-
larly typed abstracts were accepted (34.5 percent), whereas 31 of 53 of the
“typeset” abstracts were accepted (58.5 percent) (P = 0.015).

These results demonstrate that the new “typeset” appearance of data in-
creases the chance of acceptance. It may mean that “typeset” printing may
cause the data to look more impressive. Alternatively, it may mean that the
new printing makes it easier for reviewers to read the data and to appreciate
its meaning.

Most important, it means that this technological innovation reduces the
chance of success of those not currently using it.

Questions

i Display the data in the 5th paragraph in a 2× 2 table.

ii What test (and what hypotheses) are appropriate to compare the “107
of 212 vs. 747/1706”? Notice that P < 0.05. (Paragraph 5)

iii-v See after rebuttal below

...ACCEPTANCE OF ABSTRACTS - A REBUTTAL

To the Editor: Dr. Koren claims that the use of a new “typeset” method
for preparing an abstract may improve the chances for its acceptance at a
national meeting, specifically, at the 1986 annual meeting of the American
Pediatric Society and the Society for Pediatric Research (Nov 13 issue). This
assertion, if correct, should raise alarm among investigators submitting their
work for peer review and seeking a fair and objective critique. Although Dr.
Koren lists several possibilities to explain why typeset printing may enhance
the rate of acceptance of an abstract, including the possibility that printing
may make the data appear more impressive or may make the reading of an
abstract easier, his data can be interpreted differently.

Koren reports that 107 of 212 “typeset-printed” abstracts were accepted, as
compared with 747 of 1706 “regularly typed” abstracts, the relative accep-
tance rates being 51.4 versus 44 percent (P < 0.05). Because of the disparity
in the sizes of the groups, we are uncertain what form of statistical analysis
he employed. If one uses the technique of hypothesis testing of the differences
between two proportions, the proportions 107 of 212 versus 747 of 1706 have
a z value of 1849 with P<0.06. Thus, when an appropriate statistical method

is used, a significant difference between the two proportions is not found at
the 0.05 level.

These data can be examined in another way: 107 of a total of 854 accepted
abstracts (12.5 percent) were “typeset,” whereas 212 of 1918 abstracts submit-
ted (11.1 percent) were “typeset.” The difference between these proportions is
obviously not significant. The difference in the sizes of the groups also makes
it difficult to compare them. Furthermore, some abstracts were judged inde-
pendently of this process in order to be placed in a poster symposium dealing
with a specific topic (ie, “AIDS in Pediatric Patients”). Of the 30 abstracts
chosen for these poster symposia, 15 were (we think) ‘typeset printed” and
may appropriately be removed from the pool of accepted “typeset” abstracts.

Most important, a reviewer is judging the merit of a given abstract from a
photocopy of the actual abstract, not its appearance in the April 1986 issue
of Pediatric Research. “Typeset” abstracts that appear impressive in the
abstract book do not necessarily stand out on the actual abstract form.

For these reasons, Koren’s conclusion that a “technological innovation reduces
the chance of success of those not currently using it” may not be entirely
correct. Other reasons can be advanced to account for the apparent success
of “typeset” abstracts.

Finally, in order to ensure that objective criteria are being used, all reviewers
of abstracts for the 1987 meeting will receive a copy of Dr. Koren’s letter so
that they are aware of this potential problem.

R W. Chesney, M.D. Society for Pediatric Research, University of California.

Questions (continued)

iii The rebuttal claims that the difference between these two proportions
is associated with a P-value of p=0.06 (2nd paragraph). Why do you
think the “rebutting” authors arrive at a different p-value? [The typo-
graphical error (1819 for 1.849) is not the problem] (Paragraph 2, last
two sentences)

iv In the 3rd paragraph of the reply, the authors look at the data regarding
the same 1918 abstracts “in another way” i.e. in a type of case-control
analysis. This is a legitimate way to look at the data; however, the “ob-
viously nonsignificant” pvalue associated with the comparison of 107/854
vs 212/1918 is not legitimate. Why? (Paragraph 3, fourth line)

v The rebuttal mentions “the disparity in the sizes of the groups” in two
places. The second time, in paragraph 3, it is stated that “the difference
in the sizes of the two groups also makes it difficult to compare them.”
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(Third paragraph, fifth line) Do you agree? Why / Why not?

0.5 Test of a proposed mosquito repellent

An entomologist carried out the following experiment as a test of a proposed
mosquito repellent. Thirty-five volunteers had one forearm treated with a
small amount of repellent and the other with a control solution. The subjects
did not know on which forearm the repellent had been used. At dusk the
volunteers exposed themselves to mosquitoes and reported which forearm was
bitten first. In 10/35, the arm with the repellent was bitten first.

1. Make a statistical report on the findings.

2. How would you analyze the results if:
- some arms were not bitten at all?
- some people were not bitten at all?

0.6 Perioperative Normothermia

Refer to the report of this study (scanned version of text as images [.gif files]
under Resources for Chapter 5; full version, using optical character recog-
nition, and reformatting in a word processor, as a pdf file in Resources for
Chapter 7)

1. Using the same ’inputs’ as the authors did (2nd paragraph of Methods),
calculate the sample size requirements.

Some formulae do not use different null and non-null variances, instead,
for simplicity, they use the same null and non-null variance –calculated
at the average of the null and non-null p’s; and some authors use a for-
mula based not on the difference of the proportions, but of the arcsine
transformations of these proportions. Thus, you should not be surprised
if you don’t get exactly the same numbers.

See also footnote concerning the choice of ‘delta.’ The difference that
would be important (the clinically important difference) is a matter of
judgment; it should not be left to be ‘dictated’ empirically by Nature (the
authors used as their ‘delta’ the empirical difference 9/38 - 4/42 = 14.2%
found in their pilot study!). Imagine what the authors’ ‘delta’ could gave
been if they had done a pilot study of say 2 patients vs. 3 patients, or
just 1 vs. 2! And , even with increasing sample sizes, Nature is just
going to show you more precise estimates of what the difference is, not of

“the difference that would make a difference.” After all, Nature doesn’t
know how much these normothermia blankets cost, or how acceptable and
practical they would be! Indeed, it is ironic that the observed difference in
the study proper is only 19% - 6% = 13%; it is “statistically significant”
but less than the ‘clinically important delta’ used by the authors in their
sample size formula.

2. State the null and alternative hypotheses, and re-calculate the P-value in
the first row of Table 2.

3. Calculate a 95%CI for the difference in infection rates.

4. You can convert the point estimate of the difference into the “number
required to treat.” The formula for this is 1/(Infection Rate if Do Not
Treat - Infection Rate if Treat). The logic is that if 19/100 would de-
velop an infection without the intervention, and 6/100 despite it, then
intervening on 100 would prevent 19 - 6 = 13 infections, i.e.. one would
need to intervene on approximately 8 (i.e. 100/13) to prevent 1 infection.
Convert the upper and lower 95% limits for the difference (from part iii)
into the corresponding limits on the number required to treat.

0.7 Women are Safer Pilots: Study

London- Initial results of a study by Britain’s Civil Aviation Authority shows
that women behind the controls of a plane might be safer than men. The study
shows that male pilots in general aviation are more likely to have accidents
than female pilots. Only 6 per cent of Britain’s general aviation pilots are
women. According to the aviation magazine Flight International, there have
been 138 fatal accidents in general aviation in the last 10 years, and only two
involved women - less than 1.5 per cent of the total.

[Montreal Gazette, WomanNews, page F1]

1. What is the comparative parameter at issue here?

2. Comment on the epidemiologic soundness of the comparison reported.

3. Assuming that the comparison reported is a sound one, or that it can be
made so using additional information, translate the data into point and
interval estimates of the comparative parameter. Also, carry out a test
of the null value of the comparative parameter.
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0.8 Equivalent Forms of the X2 statistic from a 2×2 table

Consider a 2 × 2 table with frequencies y1 = a, b, y2 = c, d, row totals
n1 = r1, y2 = r2, column totals c1, c2, overall total n, observed proportions
p1 = y1/n1 and p2 = y2/n2, overall proportion p = (y1+y2)/n, and V ar[a|H0]
based on the ‘2-independent-binomials’ model. Show that

X2 =
∑ (Observed Frequency − Expected Frequency)2

Expected Frequency

= n× (a× d − b× c)2

r1 × r2 × c1 × c2

=
{p1 − p2}2

p(1− p)× (1/n1 + 1/n2)

=
{a− ̂E[a | H0]}2

V ar[a |H0]
.[seenote]

0.9 Bone mineral density and body composition in boys
with distal forearm fractures

J Pediatr 2001 Oct;139(4):509-15.

Goulding et al (New Zealand)

Abstract

Objective: To determine whether boys with distal forearm fractures differ from fracture-
free control subjects in bone mineral density (BMD) or body composition. Study design:
A case-control study of 100 patients with fractures (aged 3 to 19 years) and l00 age-matched
fracture-free control subjects was conducted. Weight, height, and body mass index were
measured anthropometrically. BMD values and body composition were determined by
dual-energy x-ray absorptiometry. Results: More patients than control subjects (36 vs
l4) were overweight (body mass index > 85th percentile for age, P < .001). Patients had
lower areal (aBMD) and volumetric (BMAD) bone mineral density values and lower bone
mineral content but more fat and less lean tissue than fracture-free control subjects. The
ratios (95% CIs) for all case patients/control subjects in age and weight-adjusted data were
ultradistal radius aBMD 0.94 (0.91-0.97); 33% radius aBMD 0.96 (0.93-0.98) and BMAD
0.95 (0.91-0.99); spinal L2-4 BMD 0.92 (0.89-0.95) and BMAD 0.92 (0.89-0.94); femoral
neck aBMD 0.95 (0.92-0.98) and BMAD 0.95 (0.91-0.98); total body aBMD 0.97 (0.96-
0.99), fat mass 1.14 (1.04-1.24), lean mass 0.96 (0.93-0.99), and total body bone mineral
content 0.94 (0.91-0.97). Conclusions: Our results support the view that low BMC,
aBMD, and BMAD values and high adiposity are associated with increased risk of distal
forearm fracture in boys. This is a concern, given the increasing levels of obesity in children
today. (J Pediatr 2001;139:509-15)

Fracture?
Yes No

Yes: 36 14
Overweight?

No: 64 86
Total 100 100

1. Rewrite the sentence “A case-control study of 100 patients with fractures (aged 3 to
19 years) and l00 age-matched fracture-free control subjects was conducted” using
terminology that better reflects the purpose of the 100 fracture-free subjects.

2. All of the fractures occurred over a 1-year period, ten of them in persons aged 11.
Suppose one could choose a random sample, of size ten, from all 600 11-year old boys
living in the city of Dunedin, what is the probability that this denominator series
would have an overlap of 0, 1, 2, .. with the case series of ten? 10

What if age-matching were to the nearest month of age, and that there were two cases
in boys aged 11 years and 3 months, so we took a sample of two from all of the 600?

3. Estimate the ratio of the fracture rate in the overweight to the fracture rate in the
not-overweight, and use Woolf’s method to calculate a 95% CI for it (ignore the age-
matching).

4. We can repeat the point- and interval estimation using logistic regression: e.g., in R,

y=c(rep(1,100),rep(0,100)); over=c(rep(1,36),rep(0,64),rep(1,14),rep(0,86))

summary(glm(y∼over,family=binomial))
yielding...

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2955 0.1651 -1.790 0.073490 .

over 1.2399 0.3556 3.487 0.000489

Verify that 1.2399 represents the log or and 0.3556 its SE.

0.10 Theoretical basis for “odds ratio” as estimator of
Rate Ratio, together with statistical model for the
estimator

The old-fashioned and very loose justification for using the empirical odds ratio, or, as an
estimator of the theoretical rate ratio goes back to Cornfield in the 1950s. Unfortunately
it still is the one given in many ‘modern’ texts, despite the much more general justification
provided by Miettinen in 1976.

The old justification rested on algebraic arguments using persons, not population time. The
outcome proportions involved refer to cumulative incidence.

The truly modern way is to think of the cases as arising in population-time, and to think
of the population time involved as an infinite number of person-moments - think of a
person-moment as a person at a particular moment. Say that a proportion πE of these are

10In fact, the “age-matched denominator series” was assembled as follows: All patients
with fractures were asked to supply the names of 3 friends of their own age: the first friend
who had never fractured a bone at any time of his life and who agreed to take part as a
fracture-free control subject was then enrolled.”

20



Course BIOS601: Comparisons of 2 Proportions π2 vs. π1: - models / (frequentist) inference / planning 2007.10.24

“exposed” person moments, and the remaining proportion π0 are “non-exposed” person-
moments. Suppose further that the (theoretical) event rates in the exposed and unexposed
amounts of population-time are

λE =
E[no.events]

PTE
; λ0 =

E[no.events]

PT0
,

with (theoretical) Rate Ratio θ = λE/λ0.

Denominator Series

Suppose we take a finite random sample, of size d, of the infinite number of person moments
in the base that generated the cases, and classify them into dE “exposed” person moments
and d0 = d − dE “non-exposed” person-moments. We will refer to this sample of d as the
denominator series. What is the statistical model for dE | d? Clearly, it is

dE ∼ Binomial(d, πE).

Numerator (Case) Series

Denote by c the observed number of events; we classify them into cE events in “exposed”
population-time and c0 = c − cE in the “non-exposed” population-time. We will refer to
this sample of c as the case series.

What is the statistical model for cE | c? We can think of cE as the realization of a Poisson
r.v. with mean (expectation) µE = (PTE × πE) × λE . Likewise, think of for c0 as the
realization of a Poisson r.v. with mean (expectation) µ0 = (PT0 × π0)× λ0.

Now, it is a statistical theorem (Casella and Berger, p194, exercise 4.15) that

cE | c ∼ Binomial(c, µE/[µE + µ0]).

Thus we can identify the distribution of the 4 random variables involved in the OR estimator

ÔR = or = cE/dE ÷ c0/d0 = cE/c0 ÷ dE/d0 = (cE × d0) ÷ (c0 × dE).

The cE : c0 split is governed by one binomial, involving θ and other parameters, while the
dE : d0 split is governed by a separate binomial, involving the same other parameters, but
not involving θ.

If one replaces µE and µ0 by their constituents, one can show that the odds that an
unexposed person-moment in the series of c + d represents a “case” is c : d, whereas the
corresponding odds for an exposed person moment is (θ × c) : d.

In other words, in the dataset of c+ d,

logit[Prob[case|0] = log(c/d) = β0 ; logit[Prob[case|E] = log(c/d) + log θ = β0 + βEE,

where E is an indicator variable.

So, one can estimate log θ = logOR by a logistic regression of the c + d Y ’s i.e. Y =
1 if in case series; = 0 if in denominator series, on the corresponding set of c+ d indicators
of exposure (1 if exposed, 0 if not).

================================

Note, added 2009.11.11

================================

-8- Equivalent Forms of the X2 statistic from a 2× 2 table
Consider a 2× 2 table with frequencies y1 = a, b, y2 = c, d, row totals n1 = r1, y2 = r2,
column totals c1, c2, overall total n, observed proportions p1 = y1/n1 and p2 = y2/n2,
overall proportion p = (y1 + y2)/n, and V ar[a |H0] based on the ‘2-independent-binomials’
model. Show that

X2 =
∑ (Observed Frequency − Expected Frequency)2

Expected Frequency

= n×
(a× d − b× c)2

r1 × r2 × c1 × c2

=
{p1 − p2}2

p(1− p)× (1/n1 + 1/n2)

=
{a− E[a | H0]}2

V ar[a |H0]
.

I’m embarrassed I didn’t see the 4th form right away. The key is that under a 2-independent-

binomials model, the numerator is a − ̂E[a | H0, i.e., the second component of it is also a
random variable. Indeed with yi ∼ Binomial(ri, π),

̂E[a | H0] = (y1 + y2)/(r1 + r2)

so (with y1 as a duplicate name for a, and a bit of algebra),

y1 − ̂E[a | H0] = y1(1− r1/n1)− y2/(r1/n)

so its variance is

V ar{y1 − ̂E[a | H0]} = r1π(1− π)(1− r1/n1)2 + r2π(1− π)/(r1/n)2

Now, substitute c1/n for π, and c2/n for (1− π) and you get, again after some algebra,

V̂ ar = π̂(1− π̂)r1r2/n = (c1/n)(c2/n)r1r2/n = c1c2r1r2/n
3.

The numerator of the statistic can be simplified to (ad − bc)2/n2. Putting the numerator
over the denominator leads to the result.

And the correct form should be:

X2 =
{a− E[a | H0]}2

V ar
[
a− ̂E[a | H0]

] .
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